Zerocracy, Inc.

Zerocracy Architecture
WWW.Zerocracy.com


https://www.zerocracy.com

User

Key Components

TTS

)

Policy

= |

Radar

l

= |

Claims

l

= |

Farm

= |

Dashboard

l

Xocuments




2 |

Footprint

Logs

i

2

Sanitizer

SQS Queue

2 |

Dispatcher

Farm

Claims

The main programming
language of the system is Java 8.
The build system is Maven 3.
The deployment is automated by
Rultor. Continuous integration is
done by Travis. Static analysis is
performed by Qulice, an
aggregator of Checkstyle and
PMD.

It is a large global cross-projects
queue of claims, maintained in
the AWS SQS. Anyone can drop a
claim into the queue, it is a very
fast operation. The processing of
the claims happen later, when
the dispatcher is up to it.

Each claim is a short XML
document with a pre-defined
structure, validated against a
XSD Schema. It includes
information about the source of
the event, the time and date, the
type of request, and the list of
supplementary arguments.

Footprint

There is a MongoDB database
with a single table that records
every claim that has been seen in
the queue. Later, the footprint is
accessible via the Dashboard, for
monitoring and tracking
purposes. The database is backed
up every hour/day/week via
ThreeCopies.

Cloud Logging

Each claim, after its processing
via the Farm, produces logs,
which are sent to the PaperTrail
for monitoring purposes. On top
of them, every exception is
logged to Sentry.

XSL Sanitizer

Before a claim gets into the
queue it is validated for its
correctness by a series of XSL
sanitizers. A claim may be
rejected, for example, if it
misspells the type or the login of
the author.


http://www.rultor.com
https://travis-ci.org
http://www.qulice.com
https://www.threecopies.com
https://papertrailapp.com
https://www.sentry.io

Radar

2 |

Slack Radar

2 |

GitHub Radar

Telegram Radar

2 |

N1/

Claims

Most radars receive events
through pre-configured
“webhooks,” which send events
in JSON format via RESTful API,
which Zerocrat provides for
them. For higher stability
ReHTTP web service is used as a
relay between chat platforms
and radars.

Each chat platform speaks its
own language, while claims must
have specifically unified types.
The domain specific language
claims speak is understood by all
Stakeholders in the Farm.

Decoupling
The way chat hubs are decoupled
from Farm through the queue of
claims gives a number of
architectural benefits. First of all,
the scalability is much higher,
because the server doesn’t need
to reply immediately especially
when the requests are coming in
parallel. Second, longer response
time is expectable by the user
and the server can do many
validating operations, no matter
how complex is the request. The
advantage of the chatbot
architecture was explained in A
Chatbot Is Better Than a UI for a
Microservice blog post.

Modular Architecture

The number of external systems
is growing and eventually
Zerocrat will be integrated with a
few dozens of them. Even
though the complexity of each of
them is not high, dealing with
many of them at the same time
is a serious challenge for the
development team. Modular
architecture simplified this task
and makes the system more
extendable.


http://www.rehttp.net
https://www.yegor256.com/2015/11/03/chatbot-better-than-ui-for-microservice.html
https://www.yegor256.com/2015/11/03/chatbot-better-than-ui-for-microservice.html
https://www.yegor256.com/2015/11/03/chatbot-better-than-ui-for-microservice.html

Claims

2 |

Policy

Stakeholders

Farm

Xocuments

2 |

Each stakeholder is a simple
procedure, usually 100-200 lines
long, in Groovy. Each
stakeholder is responsible for its
own narrow and isolated
operation, which is processing of
a claim and submitting new
claims to the queue.
Stakeholders “talk” to each other

only through the queue of claims.

There is a collection of 150+
stakeholders (micro scripts), also
known as “brigade,” which
perform individual management
operations; the more complex is
the Policy, the bigger the
number of stakeholders.

Configuration

The behavior of stakeholders is
configured via the Policy, an
HTML document publicly hosted
at zerocracy.com. The document
is a mix of plain English text and
placeholders for configuration
parameters. Once a change is
submitted to the Policy, the
behavior of stakeholders change
immediately.

XML is the format of data for all
project files (except the Ledger,
which stays in the PostgreSQL
database because of its very
relational nature). The files are
stored in AWS S3.

XSD Schema

Each XML document in the
storage is validated against its
corresponding XSD Schema and
is rejected if there are any issues.
Thanks to this validation all
documents in the storage are
always valid and correct.

Each XML document in the
storage has a corresponding
XSLT stylesheet to convert it to
HTML and render it in the
dashboard.


https://www.zerocracy.com/policy.html
https://www.zerocracy.com

Twitter Instagram Facebook Blog
Pitch Executive Summary Features

555 Bryant Str, Ste 470
Palo Alto, CA 94301

408.692.4742
team@zerocracy.com

0.18.0 September 16, 2020


https://twitter.com/0crat
https://instagram.com/zerocracy
https://facebook.com/zerocracy
https://www.zerocracy.com/blog.html
https://papers.zold.io/zerocracy-deck.pdf
https://papers.zold.io/executive-summary.pdf
https://papers.zold.io/features-deck.pdf
mailto:team@zerocracy.com

